2 research outputs found

    Stereoscopic video quality assessment based on 3D convolutional neural networks

    Get PDF
    The research of stereoscopic video quality assessment (SVQA) plays an important role for promoting the development of stereoscopic video system. Existing SVQA metrics rely on hand-crafted features, which is inaccurate and time-consuming because of the diversity and complexity of stereoscopic video distortion. This paper introduces a 3D convolutional neural networks (CNN) based SVQA framework that can model not only local spatio-temporal information but also global temporal information with cubic difference video patches as input. First, instead of using hand-crafted features, we design a 3D CNN architecture to automatically and effectively capture local spatio-temporal features. Then we employ a quality score fusion strategy considering global temporal clues to obtain final video-level predicted score. Extensive experiments conducted on two public stereoscopic video quality datasets show that the proposed method correlates highly with human perception and outperforms state-of-the-art methods by a large margin. We also show that our 3D CNN features have more desirable property for SVQA than hand-crafted features in previous methods, and our 3D CNN features together with support vector regression (SVR) can further boost the performance. In addition, with no complex preprocessing and GPU acceleration, our proposed method is demonstrated computationally efficient and easy to use

    Blind assessment for stereo images considering binocular characteristics and deep perception map based on deep belief network

    Get PDF
    © 2018 Elsevier Inc. In recent years, blind image quality assessment in the field of 2D image/video has gained the popularity, but its applications in 3D image/video are to be generalized. In this paper, we propose an effective blind metric evaluating stereo images via deep belief network (DBN). This method is based on wavelet transform with both 2D features from monocular images respectively as image content description and 3D features from a novel depth perception map (DPM) as depth perception description. In particular, the DPM is introduced to quantify longitudinal depth information to align with human stereo visual perception. More specifically, the 2D features are local histogram of oriented gradient (HoG) features from high frequency wavelet coefficients and global statistical features including magnitude, variance and entropy. Meanwhile, the global statistical features from the DPM are characterized as 3D features. Subsequently, considering binocular characteristics, an effective binocular weight model based on multiscale energy estimation of the left and right images is adopted to obtain the content quality. In the training and testing stages, three DBN models for the three types features separately are used to get the final score. Experimental results demonstrate that the proposed stereo image quality evaluation model has high superiority over existing methods and achieve higher consistency with subjective quality assessments
    corecore